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New Insights Into the Mechanisms of Vitamin D Action
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Abstract The biologically active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is a
secosteroid whose genomic mechanism of action is similar to that of other steroid hormones and is mediated by
stereospecific interaction of 1,25(OH)2D3 with the vitamin D receptor (VDR) which heterodimerizes with the retinoid X
receptor (RXR). After interactionwith the vitaminD response element (VDRE) in the promoter of target genes, transcription
proceeds through the interaction of VDRwith coactivators andwith the transcription machinery. The identification of the
steps involved in this process has been amajor focus of recent research in the field.However, the functional significanceof
target proteins as well as the functional significance of proteins involved in the transport and metabolism of vitamin D is
also ofmajor importance.Within the past fewyearsmuchnew information has beenobtained from studies using knockout
and transgenic mice. New insight has been obtained using this technology related to the physiological significance of
the vitamin D binding protein (DBP), used to transport vitamin Dmetabolites, as well as the physiological significance of
target proteins including 25-hydroxyvitamin D3 24-hydroxylase (24(OH)ase), 25-hydroxyvitamin D3-1a-hydroxylase
(1a-(OH)ase), VDR, and osteopontin. The crystal structure of the DBP and the ligand binding domain of the VDR have
recently been reported, explaining, in part, the unique properties of these proteins. In addition novel 1,25(OH)2D3 target
genes have been identified including the epithelial calcium channel, present in the proximal intestine and in the distal
nephron. Thus in recent years a number of exciting discoveries have beenmade that have enhanced our understanding of
mechanisms involved in the pleiotropic actions of 1,25(OH)2D3. J. Cell. Biochem. 88: 695–705, 2003.
� 2003 Wiley-Liss, Inc.
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INTRODUCTION

The actions of 1,25(OH)2D3 include the main-
tenance of calcium homeostasis and effects on
numerous other cell systems, including effects
on the immune system and on the growth and
differentiation of cancer cells. In recent years
new insight has been obtained related to
vitamin D metabolism and transport as well as
the physiological significance of known target
proteins. The elucidation of the crystal struc-
ture of the DBP and the crystal structure of the

ligand-binding domain of the VDR also repre-
sent recent important contributions. In addi-
tion, novel target geneshavebeen identifiedand
novel regulators of vitamin D action have been
discovered. In this review we will discuss new
developments in these areas that have chang-
ed our understanding of the mechanisms of
vitamin D action.

VITAMIN D METABOLISM

Themetabolismof vitaminD to its active form
is well known. Vitamin D is transported in the
blood by the vitamin D binding protein (DBP) to
the liver where it is hydroxylated at C-25
resulting in the formation of 25-hydroxyvitamin
D3 (25(OH)D3). 25(OH)D3 is transported by the
DBP to the kidney. In the proximal convolut-
ed and straight tubules of the kidney 25(OH)D3

is hydroxylated at the 1a position resulting
in the formation of the active form of vitamin D
[reviewed in Christakos, 2002]. In recent stu-
dies mice deficient in DBP were generated by
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targeted mutagenesis [Safadi et al., 1999].
Studies using thesemice resulted innew insight
related toDBP’s biological function in vitaminD
metabolism and action. As expected, DBP�/�

mice had markedly lower total serum levels of
25(OH)D and 1,25(OH)2D than DBPþ/þ mice.
However, surprisingly, levels of serum calcium
and PTH were normal in the DBP�/� mice,
suggesting that the low serum levels of vitamin
D metabolites in the absence of DBP can exist
in equilibrium with adequate intracellular con-
centrations of 1,25(OH)2D3. Studies in DBP�/�

and DBPþ/þ mice fed a vitamin D deficient diet
indicated that DBP was able to prolong the
serumhalf life of 25(OH)D3 and vitaminD.DBP
did not create abuffer for 1,25(OH)2D3, asmight
have been expected, sincemice deficient in DBP
were less susceptible to hypercalcemia andwere
resistant to vitaminD toxicity. It was suggested
that the protection against toxicity may reflect
more rapid urinary excretion of 25(OH)D3 and
a more rapid conversion to inactive polar meta-
bolites in the DBP�/� mice. The crystal struc-
ture of the human DBP has recently been
reported [Verboven et al., 2002]. The vitamin
D binding site is a cleft located at the surface of
the molecule and partly in contact with the
surrounding solvent. This contrasts with the
1,25(OH)2D3 binding site to the VDR, which is a
closed structure in the inner structure of the
receptor. 1,25(OH)2D3 can make the same
hydrogen bonds with DBP as 25(OH)D3 but
the axial 1-hydroxyl causes steric hindrance
that may explain lower DBP binding affinity
observed for 1,25(OH)2D3. The studies with the
DBP null mice as well as the DBP crystal struc-
ture represent important recent contributions.

An additional recent novel finding is that
megalin, a member of the LDL receptor super-
family which is present on the apical surface of
renal proximal tubular cells as well as in
neuroepithelium, is essential for the reabsorp-
tion of complexes of 25(OH)D3 and DBP into
proximal tubular cells [Nykjaer et al., 1999].
These findings were unexpected and first found
using megalin knock out mice. In these mice
there was abnormal urinary calcium excretion
of 25(OH)D3 that resulted in vitamin D defi-
ciency and bone disease. These results indicat-
ed for the first time that megalin is essential
to deliver 25(OH)D3 for the generation of
1,25(OH)2D3.

25(OH)D3 is converted to 1,25(OH)2D3 by the
renal cytochrome P450 enzyme 25-hydroxy-

vitaminD3-1a-hydroxylase (1-a-(OH)ase). In re-
cent studies, vitamin D 1-a-hydroxylase knock
out mice were generated [Dardenne et al.,
2001; Panda et al., 2001]. These animals had
rachitic abnormalities typically observed in
pseudovitamin D-deficiency rickets (PDDR).
Mice were hypocalcemic, hypophosphatemic
and had hyperparathyroidism. Osteomalacia
was observed in young adult mutant mice.
These mice will be a useful model of PDDR in
which various therapeutic interventions can be
tested. Although the proximal straight tubules
of the kidney are the site of expression of 1-a-
(OH)ase, it has been suggested that 1-a-(OH)ase
is present in other cell types including mac-
rophages and that local production of
1,25(OH)2D3 could play a role in the differentia-
tion or function of extra renal tissues. Although
reproductive and immune dysfunction have
been noted in the 1-a-(OH)ase KO mouse
[Panda et al., 2001], further studies are needed
to test the hypotheses, that have been a matter
of debate, concerning the physiological roles of
1-a-(OH)ase in extra renal tissues.

In the kidney 25(OH)D3 can be hydroxylat-
ed at C-24 resulting in the formation of
24,25(OH)2D3. 24-Hydroxylase is capable of
hydroxylating the 24 position of 1,25(OH)2D3

as well as 25(OH)D3 and it had been suggested
that the preferred substrate of 24(OH)ase in
vivo may be 1,25(OH)2D3 [Shinki et al., 1992].
Studies using mice with a targeted inactivating
mutation of the 24(OH)ase gene (24(OH)ase
null mutant mice) provided the first direct in
vivo evidence for a role for 24(OH)ase in the
catabolism of 1,25(OH)2D3 [St-Arnaud et al.,
2000]. 24(OH)ase deficient mice, in response to
1,25(OH)2D3 treatment, were unable to clear
1,25(OH)2D3 from the bloodstream. Whether
24,25(OH)2D3 is an active metabolite of vitamin
D with effects on bone had previously been a
matter of debate. Intramembranous bone for-
mation was impaired in the 24(OH)ase null
mutantmice.However crossing 24(OH)ase defi-
cient mice to vitamin D receptor (VDR) ablated
mice totally rescued the bone phenotype, indi-
cating that elevated 1,25(OH)2D3 levels in the
24(OH)ase null mutant mice, acting through
VDR, and not the absence of 24,25(OH)2D3 was
the cause of the defect.

Thus, in summary, generation of mice defi-
cient in DBP, in 1-a-(OH)ase and in 24(OH)ase
have provided new insight into vitaminDmeta-
bolism and action. The role of DBP is to
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maintain stable serumstores inanenvironment
of decreased vitamin D availability. DBP does
not create a buffer for 1,25(OH)2D3, as might
have been expected, since DBP�/� mice were
less susceptible to hypercalcemia and toxi-
city induced by vitamin D overload. The 1-a-
(OH)ase nullmutantmousemodel has provided
in vivo evidence for the importance of this
enzyme in the skeletal system and has sug-
gested the possible importance of this enzyme in
the immune and reproductive systems as well.
In addition, studies using the 24(OH)ase KO
mouse have provided the first in vivo evidence
for the role of 24(OH)ase in the catabolism of
1,25(OH)2D3 and have indicated, although it
had been controversial, that 24,25(OH)2D3 is a
relatively inactive metabolite.

NEW DEVELOPMENTS IN AN
UNDERSTANDING OF THE ROLE
OF 1,25(OH)2D3 IN CLASSICAL

TARGET TISSUES

Bone

Whether 1,25(OH)2D3 can act directly on
bone or whether the antirachitic effects of
1,25(OH)2D3 are indirect resulting from an
increase by 1,25(OH)2D3 in intestinal absorp-
tion of calcium and phosphorous resulting in
their increased incorporation into bone, had
been a matter of debate. Recent studies using
VDR ablated mice (VDR knock out (KO)
mice) addressed this question [Li et al., 1997;
Yoshizawa et al., 1997; Amling et al., 1999].
VDR KO mice are born phenotypically normal
and develop secondary hyperparathyroidism,
hypocalcemia, and rickets and osteomalacia
after weaning. However, when VDR KO mice
are fed a rescue diet (high levels of calcium,
phosphorous, and lactose) serum ionized cal-
cium and PTH levels were normalized and
rickets and osteomalaciawere prevented. These
findings in the VDR KO mice suggest that the
major effect of 1,25(OH)2D3 is on intestinal
calcium and phosphorous absorption, resulting
in their increased availability for incorpora-
tion into bone. However, in vitro studies sup-
port a direct effect of 1,25(OH)2D3 on bone.
1,25(OH)2D3 stimulates the formation of bone
resorbing osteoclasts. The mechanism requires
cell to cell contact between osteoblast/stromal
cells and hematopoetic osteoclast progeni-
tors and involves induction by 1,25(OH)2D3 in
osteoblastic cells of osteoprotegerin ligand or

RANK-L (osteoclast differentiating factor)
[Yasuda et al., 1998; Takeda et al., 1999].
Studies using VDR KO mice, which includ-
ed in vitro studies, showed that the pre-
sence of VDR in osteoblastic cells is required
for the stimulation of osteoclast formation by
1,25(OH)2D3 [Takeda et al., 1999]. 1,25(OH)2D3

also directly stimulates the production of the
bone calcium binding protein osteocalcin whose
synthesis is positively associated with new
bone formation [Price and Baukol, 1980].
Another calcium binding protein induced by
vitamin D in osteoblasts is osteopontin. Recent
studies in osteopontin KO mice have indicated
that these mice are resistant to parathyroid
hormone induced bone resorption, suggesting a
requirement for osteopontin in bone resorption
[Ihara et al., 2001]. 1,25(OH)2D3 has also been
shown to regulate Osf2/Cbfa1 transcription
factor that regulates osteoblastic differentia-
tion [Drissi et al., 2002]. In addition, novel
analogs of 1,25(OH)2D3 have been developed
that exhibit selective anabolic actions in osteo-
blasts and result in enhanced bone formation
[Peleg et al., 2002; Shevde et al., 2002]. These
findings are important since they suggest that
bone selective analogs of 1,25(OH)2D3 may be
therapeutically beneficial for the treatment of
bone loss disorders. Studies using transgenic
mice overexpressing the VDR in mature osteo-
blastic bone forming cells have noted increased
bone formation, further emphasizing direct
effects of 1,25(OH)2D3 on bone [Gardiner et al.,
2000]. Thus, although studies in VDR KO mice
suggest an effect on bone secondary to an
effect of 1,25(OH)2D3 on intestinal calcium
absorption, 1,25(OH)2D3 does have direct
effects on bone. Studies in the VDR KO mice
may not reveal direct effects on bone due to
similar actions by other factors. The effects of
1,25(OH)2D3 on bone are diverse and can affect
formation or resorption.

Intestine

1,25(OH)2D3 is the principal factor control-
ling intestinal calcium absorption. 1,25(OH)2D3

interacts with the intestinal VDR and induces
the production of the calcium binding protein
calbindin. Calbindin is thought to act as an
intracellular calcium ferry and to act as a cyto-
solic buffer to prevent toxic levels of calcium
from accumulating in the intestinal cell during
1,25(OH)2D3 mediated translocation of calcium
[Raval-Pandya et al., 1998]. In VDR KO mice
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the major defect in intestinal calcium absorp-
tion is accompanied by a marked reduction in
calbindin-D9k [Li et al., 1997]. Calcium extru-
sion at the basolateral membrane of the intes-
tine is an active process and previous studies
have shown that the intestinal plasma mem-
brane calciumpump (PMCA) andPMCAmRNA
are stimulated by 1,25(OH)2D3 [Wasserman
et al., 1992; Cai et al., 1993]. In addition to the
role of 1,25(OH)2D3 on transcellular movement
of calcium and on the extrusion of calcium form
the intestinal cell, it has been known that the
rate of calcium entry can be increased by
1,25(OH)2D3. However the existence of a cal-
cium channel at the brush border membrane
responsible for this process had been controver-
sial. Recently a calcium selective channel, that
is potentially important in the control of
intestinal calcium absorption, was cloned from
rat duodenum [Peng et al., 1999]. This novel
calcium channel may indeed play a key role in
vitamin D dependent calcium entry into the
enterocyte and may be the rate-limiting step in
vitaminDdependent intestinal calcium absorp-
tion [Van Cromphaut et al., 2001]. This channel
is distinct from voltage gated calcium channels

and is part of a subfamily of channels of which
the capsaicin receptor was the first identifi-
ed member. The epithelial calcium channel
cloned from rat duodenum, CaT1, contains
6 transmembrane domains and 4 ankyrin
repeat domains [Peng et al., 1999] (Fig. 1). The
presence of the 4 ankyrin repeat domains
suggests that CaT1 may associate with cytos-
keletal proteins supporting the microvilli at the
apical pole of the absorptive cells of the intes-
tine. An understanding of the regulation of the
epithelial calcium channel as well as an under-
standing of the relationship of calbindin to this
channel in the absorptive cells of the intestine
should result in new insight in our under-
standing of the process of vitamin D dependent
intestinal calcium absorption.

Kidney

In the kidney, the key site of the hormonal
regulation of calcium is transcellular calcium
transport in the distal tubule [Friedman, 1999].
Similar to transcellular intestinal calcium
absorption, the effect of 1,25(OH)2D3 on renal
calcium transport involves calcium entry
through the apical membrane, diffusion

Fig. 1. CaT1 (epithelial calcium channel cloned from rat duodenum): predicted membrane topology and
domain structure. CaT1 contains 6 transmembrane domains. The putative N-linked glycosylation site
(branched chain) as well as putative protein kinase A (star) and C (arrows) phosphorylation sites are marked.
This novel calcium channel has been suggested to play a key role in vitaminD dependent calcium entry into
the enterocyte. [Reproduced with permission from Peng et al., 1999].
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through the cytosol involving the vitamin D
inducible calcium binding protein, calbindin,
and active calcium extrusion at the basolateral
membrane [Raval-Pandya et al., 1998; Sooy
et al., 2000]. Similar to studies in the intestine,
an apical calcium channel was also identifi-
ed in the distal convoluted tubule and the
distal connecting tubules (CaT2 or ECaC1)
[Hoenderop et al., 1999; Peng et al., 2000] and
found to be induced by 1,25(OH)2D3 [Hoenderop
et al., 2001]. CaT2 shares 73.4% sequence
homology with the apical calcium channel
localized in the intestine, CaT1 [Peng et al.,
2000]. These calcium channels represent a new
family of calcium selective ion channels. The
identification of these channels is of interest
since it will provide for the first time an
understanding of how calcium enters the apical
membrane of 1,25(OH)2D3 responsive epithelia.

NON CLASSICAL ACTIONS OF 1,25(OH)2D3

Inhibition of Proliferation of Cancer Cells

1,25(OH)2D3 has been reported to inhibit the
proliferation of a number of malignant cells,
including breast and prostate cancer cells
[Colston and Hansen, 2002; Polek and Weigel,
2002]. Recent studies indicate that a combina-
tion of 1,25(OH)2D3 or 1,25(OH)2D3 analog and
retinoids may have greater therapeutic poten-
tial for the treatment of breast and prostate
cancer [Blutt et al., 1997; Campbell et al., 1998,
1999; Zhao et al., 1999;Wang et al., 2000, 2001].
A combination of 1,25(OH)2D3 and retinoic acid
lowers the threshold for killing of breast cancer
cells by chemotherapeutic agents [Wang et al.,
2000]. In addition, expression of the retinoic
acid receptor b can sensitize prostate cancer
cells to growth inhibition mediated by a combi-
nation of retinoids and vitamin D analog,
suggesting that simultaneous treatment of
vitamin D analog and receptor selective reti-
noids may have therapeutic potential for the
treatment of androgen dependent and indepen-
dent prostate cancer [Campbell et al., 1998].

Effects on the Immune System

1,25(OH)2D3 can affect the differentiation
and function of cells in the immune system.
CD4 cells of T lymphocytes have been reported
to be thepreferential target of 1,25(OH)2D3.The
two distinct functional CD4 cell types are Th1
and Th2 cells. The Th1 cells preferentially
produce IL-2, IFN-g, and TNF-a and stimulate

the cellular immune system. Th2 cells prefer-
entially secrete IL-4 and IL-10 and inhibit Th1
function.Th1 cells are themaineffector cells of a
number of autoimmune diseases and of organ
rejection [Liblau et al., 1995]. It has been shown
that 1,25(OH)2D3 inhibits Th1 cells and the
production of Th1 cytokines IL-2, IFN-g, and
TNF-a [Lemire and Archer, 1991]. For IL-2 and
IFN-g it has been reported that the mechanism
involves VDR mediated inhibition of gene
transcription [Alroy et al., 1995; Cippitelli and
Santoni, 1998]. 1,25(OH)2D3 has also been
reported to upregulate IL-4 [Cantorna et al.,
1998]. Most recently 1,25(OH)2D3 has been
reported to inhibit the differentiation and sur-
vival of dendritic cells, resulting in impair-
ed alloreactive T cell activation [Penna and
Adorini, 2000; Griffin et al., 2001]. Several
previous studies indicated that 1,25(OH)2D3

can either prevent or at least partially protect
against the induction of a number of ex-
perimental autoimmune disease including ex-
perimental allergic encephalitis (the murine
model for multiple sclerosis) [Lemire and
Archer, 1991], experimental lupus erythe-
matosus [Abe et al., 1990], and autoimmune
thyroiditis [Fournier et al., 1990]. 1,25(OH)2D3

has also been reported to prevent autoim-
mune diabetes in nonobese diabetic (NOD)
mice [Casteels et al., 1998]. Thus, analogs of
1,25(OH)2D3 with increased immunomodula-
tory properties and low calcemic activitymay be
candidates for the treatment of autoimmune
diseases.

TRANSCRIPTIONAL REGULATION BY
1,25(OH)2D3: FACTORS INVOLVED

Vitamin D Receptor

The functional domains of the VDRare theN-
terminal DNA binding domain (DBD) and the C
terminal ligand binding domain (LBD). The
hinge region links the two functional domains
and is also immunogenic [see Haussler et al.,
1998 for review]. Within the DBD two zinc
atoms form zinc finger DNA binding motifs
(residues 24–90 in the hVDR). The C terminal
regions of hVDR in closest proximity to the
1,25(OH)2D3 have been reported to extend
approximately from residues 227–422. The
LBD of VDR has also been shown to be involved
in protein–protein interaction of VDR with
RXR and other cofactors. Mutagenesis studies
have indicated that amino acids 317 and 395
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and amino acids 244 and 263, corresponding to
portions of helices 7–10 and 3–4, respectively
are important for ligand dependent heterodi-
merization with RXR [Whitfield et al., 1995; Jin
et al., 1996]. Most recently the crystal structure
of the VDR LBD bound to 1,25(OH)2D3 or
analogs of 1,25(OH)2D3 has been published
[Rochel et al., 2000; Tocchini-Valentini et al.,
2001]. The hVDR LBD structure is most closely
related to the holo hRARgLBD. In the VDR, the
1,25(OH)2D3 binding site is a closed pocket
formed in the inner structure of the receptor. In
theVDRpocket, theA-ring of 1,25(OH)2D3has a
B-chair conformation. The crystal structure of
theVDRhas revealed theactive conformation of
the bound ligand and will allow, in future
studies, a more complete understanding of
the three dimensional contacts between VDR
and RXR and between VDR and other acces-
sory factors.

VDR Subcellular Trafficking

Although there is little question that the
liganded form of VDR is localized predomi-
nantly in the nucleus, there exists some con-
troversy regarding the subcellular localization
of the unliganded VDR. Previous cell fractiona-
tion studies suggested that unliganded VDR is
localized mainly in the nucleus. However,
recent studies using fluorescent protein chi-
meras of VDR and fluorescent microscopy in
living cells showed that unliganded VDR can
partition between the cytoplasm and the
nucleus, that 1,25(OH)2D3 induces cytoplasmic
translocation to the nucleus and that deletion of
the activation function 2 domain (AF-2) close to
the C terminus of the LBD prevents hormone
induced translocation [Racz and Barsony, 1999;
Prufer et al., 2000]. These findings suggest that
cofactors that are known to bind to the VDR in
this region participate in VDR transport. RXR
was also reported to promote the nuclear
accumulation of VDR and to inhibit export of
VDR from the nucleus [Prufer and Barsony,
2002]. These studies have provided new find-
ings that suggest trafficking of VDR andRXR in
the regulation of 1,25(OH)2D3 action.

Hereditary Vitamin D Resistant Rickets

Hereditary Vitamin D resistant rickets
(HVDRR) is a rare autosomal recessive disorder
characterized by early onset of rickets and
organ resistance to 1,25(OH)2D3.The resistance
to 1,25(OH)2D3 is caused by heterogeneous

mutations in the VDR. A number of specific
mutations have been previously characterized
[reviewed in Haussler et al., 1998]. Recent
studies using three HVDRR mutations in the
LBD (R274L, H305Q, and F251C) revealed that
treatment with analogs of 1,25(OH)2D3 par-
tially or completely restored the responsiveness
of the mutated VDR, suggesting the possibility
of using 1,25(OH)2D3 analogs to treat selected
patients with HVDRR [Gardezi et al., 2001].
Most recently, the first case of a naturally
occurring mutation in the VDR (E420K) that
disrupts coactivator binding to the VDR and
causes HVDRR has been identified [Malloy
et al., 2002]. In addition, a case of HVDRR with
alopecia and normal VDR has been demon-
strated and found to be due to overexpression of
an hnRNPA-related nucleic acid binding pro-
tein, recently named vitamin D response ele-
ment binding protein (VDRE-BP) [Adams et al.,
2002]. The VDRE-BP competes with VDR-RXR
for binding to the VDRE [Chen et al., 2000].
VDRE-BP resistance to 1,25(OH)2D3 can be
compensated for another set of proteins known
as intracellular vitamin D binding proteins
(IDBP) [Wu et al., 2000]. They bind 25-hydro-
xylated vitamin D metabolites. They are in
the heat shock protein family and promote the
uptake, VDR-RXR directed transactivation and
preferential 1 hydroxylation of 25-hydroxylated
vitamin D metabolites [Wu et al., 2002]. The
VDRE-BP and the IDBPs are newly discovered,
novel regulators of vitamin D action.

VDR can Function As a Receptor
for Lithocholic Acid

Recent studies suggested that VDR mediates
not only the effects of 1,25(OH)2D3 but also
functions as a receptor for the bile acid, litho-
cholic acid (LCA). Makishima et al. [2002]
indicated that LCA activates VDR and induces
expression of CYP3A, an enzyme that detoxifies
LCA in the liver and intestine. Recent previous
studies identified CYP3A as a novel target gene
of 1,25(OH)2D3 action [Schmiedlin-Ren et al.,
1997; Thummel et al., 2001]. Thus both
1,25(OH)2D3 and LCA can activate VDR and
induce expression of CYP3A. Micromolar con-
centrations of LCA, compared to nanomolar
concentrations of 1,25(OH)2D3, are needed to
induce transcription of CYP3A. It was sug-
gested that VDR could be a bile acid sensor in
the enteric tract where elevated concentrations
of LCA are observed. These novel findings
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suggest a mechanism that may explain the
proposed protective effect of 1,25(OH)2D3

against colon cancer and the enhanced cellular
proliferation observed in the colon of VDR KO
mice [Kane et al., 1996; Kallay et al., 2001].

Interaction of VDR with the
Transcription Machinery

The mechanisms involved in VDR mediated
transcription following the binding of the VDR-
RXR heterodimer to the VDRE of target genes
are only now beginning to be defined. TFIIB as
well as several TATA-binding protein (TBP)-
associated factors (TAFs) have recently been
reported to be involved in VDR mediated
transcription. TFIIB interacts with unliganded
VDR and 1,25(OH)2D3 disrupts the VDR-TFIIB
complex, suggesting that in the presence of
ligand, TFIIB is released for assembly into the
preinitiation complex [Masuyama et al., 1997].
TAFII135 potentiates VDR mediated transcrip-
tional activity and TAFII28 and TAFII55 inter-
act with VDR (at a helices H3–H5 and at a helix
8) [Mengus et al., 1997, 2000; Lavigne et al.,
1999]. A mutation in the H3–H5 region was
reported to abolish VDR-mediated transcrip-
tion [Mengus et al., 2000].

SRC/p160 Coactivators

The p160 coactivators, that include SRC-1
(NcoA-1 or p160), GRIP-1 (TIF2, NcoA-2 or
SRC-2), ACTR (pCIP, RAC3 or SRC-3) share a
series of LxxLL (or NR box) motifs, possess
histone acetyl transferase (HAT) activity and
interact with the AF2 domain of steroid recep-
tors, including VDR, in a ligand dependent
manner. The p160 coactivators have been
reported to recruit CBP (CREB binding pro-
tein),whichalsohasHATactivity, resulting in a
multisubunit complex [see McKenna et al.,
1999; Freedman, 1999 for reviews]. Recent
studies by Issa et al. [2001] indicated that
GRIP-1 and ACTR (RAC3) could interact with
VDR simultaneously and suggested that cell
and promoter specific functions of VDR may
bemediated through differential recruitment of
coactivators.

NcoA-62/Ski-interacting protein

Ski-interacting protein (SKIP) is an AF-2
independent coactivator for VDR that lacks
LxxLL motifs and HAT activity but acts by
forming a ternary complex with VDR and SRC
coactivators (GRIP and SRC-1) to result in

synergistic effects on VDR mediated transcrip-
tion [Zhang et al., 2001].

Vitamin D Receptor Interacting Protein

VDRmediated transcription is also mediated
by a coactivator complex, DRIP [vitamin D
receptor interacting protein, also called TRAP
and ARC, depending on the transcription factor
initially identified as the target (TR or AR,
respectively)]. The complex does not have
HAT activity but functions in part through
recruitment of RNA polymerase II [Rachez
et al., 1999] (Fig. 2).

Other Factors Modulating VDR
Mediating Transcription

A number of promoter specific transcription
factors have recently been reported tomodulate
VDR mediated transcription. The Ras activat-
ed Ets transcription factor was found to be
important for 1,25(OH)2D3mediated24(OH)ase
transcription [Dwivedi et al., 2000]. YY1 has
been identified as a transcription factor in-
volved in the repression of VDR mediated
24(OH)ase and OC transcription [Guo et al.,
1997; Raval-Pandya et al., 2001]. CCAAT/
enhancer binding protein (C/EBP) b and d,
induced by 1,25(OH)2D3 in osteoblasts, can
enhance 24(OH)ase and OC transcription
[Dhawan et al., 2002; Gutierrez et al., 2002].
In the regulation of OC transcription there is
synergism between C/EBP b and Runx 2 (Cbfa
1) mediated by the interaction between Runx 2
and C/EBP b [Gutierrez et al., 2002].

Phosphorylation has also been reported to
regulate VDR mediated transcription. Phos-
phatase inhibitors can result in enhancement of
VDR mediated transcription and this enhance-
mentmaybedue inpart to increased interaction
between VDR and DRIP205, a subunit of the
DRIP coactivator complex [Barletta et al.,
2002]. Increased interaction between VDR and
coactivators such as DRIP205 may be a major
mechanism that couples extracellular signals to
vitaminDaction. Thus,wearenowbeginning to
understand the multiple factors and mechan-
isms involved in the transcriptional response of
various target genes to 1,25(OH)2D3.

FUTURE DIRECTIONS

In the future, novel target genes and new
factors involved in VDRmediated transcription
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will be identified in numerous different sys-
tems. With the elucidation of the crystal
structure of VDR, an increased understanding
of the structure of VDR in the presence and
absence of ligand and/or protein partnerswill be
obtained. Based on the structure of VDR
synthetic analogs of 1,25(OH)2D3 may be de-
signed that would selectively modulate specific
1,25(OH)2D3 responses in specific target tis-
sues. The analogs would have therapeutic
potential not only for the treatment of bone loss
disorders but also for the treatment of various
types of cancer and for the treatment of
autoimmune disorders.
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